
Z-fighting aware Depth Peeling

Andreas A. Vasilakis∗

University of Ioannina
Ioannis Fudos†

University of Ioannina

1 Introduction

Efficient capturing of the entire topological and geometric infor-
mation of a 3D scene is an important feature in many graphics
applications for rendering multi-fragment effects. Example appli-
cations include order independent transparency, volume rendering,
CSG rendering, trimming, and shadow mapping all of which re-
quire operations on more than one fragment per pixel location.

An influential multi-pass technique isfront-to-back (F2B) depth
peeling [Everitt 2001] which works by peeling off a single frag-
ment per pass and by exploiting the GPU capabilities to accumulate
the final result. The major drawback of this peeling algorithm is
that fragment layers with depth identical to the fragment depth de-
tected in the previous pass are discarded and so not peeled.Stencil
Routed A-buffer(SRAB) [Myers and Bavoil 2007] treats z-fighting
for sorted fragments. However, SRAB is limited by the resolution
of the stencil buffer and is incompatible with hardware supported
multisample antialiasing.k-buffer [Bavoil et al. 2007] processesk
fragments in a single pass, thus performing up tok times faster than
F2B. k-buffer suffers from read-modify-write hazards and needs a
small fixed amount of additional memory which is allocated in the
form of multi render target buffers. Similarly to SRAB, k-buffer re-
quires a pre-sorting of the primitives of the scene to treat correctly
up tok Z-fighting fragments.

In this work, we introduce a novel technique for commodity graph-
ics hardware that completely treats Z-fighting by extending F2B
depth peeling with the overhead of one extra geometry pass. To
speed up depth peeling at scenes with large number of layers with
same depth values, we also propose an approximate z-fighting free
depth peeling technique that combines the F2B and the k-buffer al-
gorithms.

Figure 1: Order independent transparency with z-fighting correc-
tions for a scene consisting of 3 bunnies.

2 Z-fighting Correction Algorithms

Extending F2B: We present the Z-fighting free F2B (F2B ZF)
depth peeling by adapting the F2B algorithm to peel all fragments
placed at the same depth. When we have peeled all fragments at
one depth, the next depth layer underneath is returned. To obtain
all fragments at the same depth we discard the fragments that are
not placed at this depth. To distinguish among z-fighting fragments,
we extract (peel) the color of the fragment which has the max-
imum primitive identifier (build-in variablegl PrimitiveID of
GLSL [Kessenich 2009]). One extra geometry pass is used to cal-
culate the sum of the (remaining, not peeled) z-fighting fragments
and find which of them should be extracted next. We discard peeled
fragments of the same depth by eliminating all fragments that have
a primitive identifier equal or larger than the maximum primitive id
determined during the previous step. Both computations are per-
formed in one pass using additive and maximum blending opera-
tions respectively. The overhead of this algorithm as compared to

∗e-mail:abasilak@cs.uoi.gr
†e-mail:fudos@cs.uoi.gr

the original F2B is the increase of the number of geometry passes
from a scene with depth complexityN to 2N + 1. The plus one
pass overhead is due to the fact that the first depth peeling pass
serves only as an initialization of the depth (no color information is
extracted):

Algorithm 1 F2B ZF Depth Peeling

{1st Rendering Pass using Max Blending}

1: if not first passthen
2: return The color of the fragment with the maximum ID
3: end if
4: if all fragments at this depth have been peeledthen
5: return next nearest layer depth
6: else
7: return same layer depth
8: end if
{2nd Rendering Pass using Add and Max Blending}

1: for all not peeled fragments placed at current depth layerdo
2: return The sum of them
3: return The maximum ID of them
4: end for

Combining F2B with k-buffer: We further introduceF2BKB ZF,
a depth peeling technique combining traditional depth peeling with
the k-buffer approach. At each iteration, a depth layer is extracted
using the classical F2B rendering pass. Then, using a variation of
k-buffer we only extract fragments positioned at the same depth
layer. Note that initial primitive sorting is not needed since we peel
fragments at the same depth. While this method is much faster for
many scenes, it cannot eliminate the z-fighting effect when there
are more thank fragments at the same depth.

3 Results

Methods MB Sorting MSAA Peeled Layers Z-fighting Accuracy Total Passes FPS

F2B 9 × √ [8,8,8,8] [100,25,12.5,0.08] [8,8,8,8] [219,83,45,9]

k-buffer 102 √ √ [8,29,56,56] [100,90,87.5,58.3] [1,4,7,7] [147,23,8,4]

SRAB 126 √ × [8,32,48,48] [100,100,75,50] [1,4,6,6] [123,19,10,7]

F2B_ZF 33 × √ [8,32,64,96] [100,100,100,100] [17,65,129,193] [125,14,4,1]

F2BKB_ZF 33 × √ [8,32,64,64] [100,100,100,66.6] [16,16,16,16] [59,30,11,5]

Table 1: Comparison between traditional depth peeling techniques
and proposed methods.

Figure 1 illustrates transparent rendering for three differently
rendered Stanford Bunnies (69,451 triangles) using z-fighting
correction. Finally, Table1 shows a comparison in terms of
peeling accuracy, performance (in fps) and memory storage
(in Mbytes) of the original F2B, k-buffer and SRAB methods
and both of our proposed alternatives for a scene consist-
ing of [1, 4, 8, 12] bunnies at a1024 × 768 viewport on an
nVidia Geforce GTX 480. Finally, the software is available at
http://www.cs.uoi.gr/ ˜ fudos/siggraph2011.html .

References

BAVOIL , L., CALLAHAN , S. P., LEFOHN, A., COMBA , J. A .
L. D., AND SILVA , C. T. 2007. Multi-fragment effects on the
GPU using the k -buffer.Proceedings of the 2007 symposium on
Interactive 3D graphics and games - I3D ’07.

EVERITT, C., 2001. Interactive Order-Independent Transparency,
Tech. Report, Nvidia Corporation.

KESSENICH, J., 2009. The opengl shading language version: 1.50,
document revision: 11.

MYERS, K., AND BAVOIL , L. 2007. Stencil Routed A-Buffer.
SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches.

abasilak
Typewriter
Updated version of the final, definitive version of this paper, available at: http://dl.acm.org/citation.cfm?id=2037801

http://www.cs.uoi.gr/~fudos/siggraph2011.html

	Introduction
	Z-fighting Correction Algorithms
	Results



